クォータニオン

提供:ペチラボ書庫
2024年7月13日 (土) 12:52時点におけるPtt (トーク | 投稿記録)による版
ナビゲーションに移動 検索に移動

四元数。

実数 [math]\displaystyle{ a,b,c,d }[/math] と虚数単位 [math]\displaystyle{ i,j,k }[/math] を用いて [math]\displaystyle{ a + bi + cj + dk }[/math] と表される。

ただし、[math]\displaystyle{ i^2=j^2=k^2=ijk=-1 }[/math] である。

積について非可換であることに注意する。

3次元ベクトルによる表現

[math]\displaystyle{ \boldsymbol{x}=\begin{bmatrix} x \\ y \\ z \end{bmatrix}, \boldsymbol{i}=\begin{bmatrix} i \\ j \\ k \end{bmatrix} }[/math] のようにすれば、 [math]\displaystyle{ q = a + \boldsymbol{x} \cdot \boldsymbol{i} }[/math] と表示できる。

共役

[math]\displaystyle{ q = a + bi + cj + dk }[/math] に対し [math]\displaystyle{ q^* = a - bi - cj - dk }[/math] を考える。

すると、

[math]\displaystyle{ qq^*=q^*q=a^2+b^2+c^2+d^2 }[/math]

となる。

特に、[math]\displaystyle{ ||q||=1 }[/math] のとき、[math]\displaystyle{ q^{-1}=q^* }[/math] である。

回転

そのうち書きたい

クォータニオンの積と内積・外積など

z軸まわりの回転

任意軸周りの回転